Serveur d'exploration sur Mozart

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Satellite-observed pollution from Southern Hemisphere biomass burning

Identifieur interne : 000152 ( PascalFrancis/Corpus ); précédent : 000151; suivant : 000153

Satellite-observed pollution from Southern Hemisphere biomass burning

Auteurs : D. P. Edwards ; L. K. Emmons ; J. C. Gille ; A. Chu ; J.-L. Attie ; L. Giglio ; S. W. Wood ; J. Haywood ; M. N. Deeter ; S. T. Massie ; D. C. Ziskin ; J. R. Drummond

Source :

RBID : Pascal:06-0408047

Descripteurs français

English descriptors

Abstract

Biomass burning is a major source of pollution in the tropical Southern Hemisphere, and fine mode carbonaceous particles are produced by the same combustion processes that emit carbon monoxide (CO). In this paper we examine these emissions with data from the Terra satellite, CO profiles from the Measurement of Pollution in the Troposphere (MOPITT) instrument, and fine-mode aerosol optical depth (AOD) from the Moderate-Resolution Imaging Spectroradiometer (MODIS). The satellite measurements are used in conjunction with calculations from the MOZART chemical transport model to examine the 2003 Southern Hemisphere burning season with particular emphasis on the months of peak fire activity in September and October. Pollutant emissions follow the occurrence of dry season fires, and the temporal variation and spatial distributions of MOPITT CO and MODIS AOD are similar. We examine the outflow from Africa and South America with emphasis on the impact of these emissions on clean remote regions. We present comparisons of MOPITT observations and ground-based interferometer data from Lauder, New Zealand, which indicate that intercontinental transport of biomass burning pollution from Africa often determines the local air quality. The correlation between enhancements of AOD and CO column for distinct biomass burning plumes is very good with correlation coefficients greater than 0.8. We present a method using MOPITT and MODIS data for estimating the emission ratio of aerosol number density to CO concentration which could prove useful as input to modeling studies. We also investigate decay of plumes from African fires following export into the Indian Ocean and compare the MOPITT and MODIS measurements as a way of estimating the regional aerosol lifetime. Vertical transport of biomass burning emissions is also examined using CO profile information. Low-altitude concentrations are very high close to source regions, but further downwind of the continents, vertical mixing takes place and results in more even CO vertical distributions. In regions of significant convection, particularly in the equatorial Indian Ocean, the CO mixing ratio is greater at higher altitudes, indicating vertical transport of biomass burning emissions to the upper troposphere.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0148-0227
A03   1    @0 J. geophys. res.
A05       @2 111
A06       @2 D14
A08 01  1  ENG  @1 Satellite-observed pollution from Southern Hemisphere biomass burning
A11 01  1    @1 EDWARDS (D. P.)
A11 02  1    @1 EMMONS (L. K.)
A11 03  1    @1 GILLE (J. C.)
A11 04  1    @1 CHU (A.)
A11 05  1    @1 ATTIE (J.-L.)
A11 06  1    @1 GIGLIO (L.)
A11 07  1    @1 WOOD (S. W.)
A11 08  1    @1 HAYWOOD (J.)
A11 09  1    @1 DEETER (M. N.)
A11 10  1    @1 MASSIE (S. T.)
A11 11  1    @1 ZISKIN (D. C.)
A11 12  1    @1 DRUMMOND (J. R.)
A14 01      @1 National Center for Atmospheric Research @2 Boulder, Colorado @3 USA @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 9 aut. @Z 10 aut. @Z 11 aut.
A14 02      @1 Joint Center for Earth Systems Technology, University of Maryland, Baltimore County @2 Baltimore, Maryland @3 USA @Z 4 aut.
A14 03      @1 Observatoire Midi-Pyrénées @2 Toulouse @3 FRA @Z 5 aut.
A14 04      @1 NASA Goddard Space Flight Center @2 Greenbelt, Maryland @3 USA @Z 6 aut.
A14 05      @1 National Institute of Water and Atmospheric Research Ltd, Central Otago @2 Lauder @3 NZL @Z 7 aut.
A14 06      @1 Met Office @2 Exeter @3 GBR @Z 8 aut.
A14 07      @1 Department of Physics, University of Toronto @2 Toronto, Ontario @3 CAN @Z 12 aut.
A20       @2 D14312.1-D14312.17
A21       @1 2006
A23 01      @0 ENG
A43 01      @1 INIST @2 3144 @5 354000133564730350
A44       @0 0000 @1 © 2006 INIST-CNRS. All rights reserved.
A45       @0 2 p.1/4
A47 01  1    @0 06-0408047
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of geophysical research
A66 01      @0 USA
C01 01    ENG  @0 Biomass burning is a major source of pollution in the tropical Southern Hemisphere, and fine mode carbonaceous particles are produced by the same combustion processes that emit carbon monoxide (CO). In this paper we examine these emissions with data from the Terra satellite, CO profiles from the Measurement of Pollution in the Troposphere (MOPITT) instrument, and fine-mode aerosol optical depth (AOD) from the Moderate-Resolution Imaging Spectroradiometer (MODIS). The satellite measurements are used in conjunction with calculations from the MOZART chemical transport model to examine the 2003 Southern Hemisphere burning season with particular emphasis on the months of peak fire activity in September and October. Pollutant emissions follow the occurrence of dry season fires, and the temporal variation and spatial distributions of MOPITT CO and MODIS AOD are similar. We examine the outflow from Africa and South America with emphasis on the impact of these emissions on clean remote regions. We present comparisons of MOPITT observations and ground-based interferometer data from Lauder, New Zealand, which indicate that intercontinental transport of biomass burning pollution from Africa often determines the local air quality. The correlation between enhancements of AOD and CO column for distinct biomass burning plumes is very good with correlation coefficients greater than 0.8. We present a method using MOPITT and MODIS data for estimating the emission ratio of aerosol number density to CO concentration which could prove useful as input to modeling studies. We also investigate decay of plumes from African fires following export into the Indian Ocean and compare the MOPITT and MODIS measurements as a way of estimating the regional aerosol lifetime. Vertical transport of biomass burning emissions is also examined using CO profile information. Low-altitude concentrations are very high close to source regions, but further downwind of the continents, vertical mixing takes place and results in more even CO vertical distributions. In regions of significant convection, particularly in the equatorial Indian Ocean, the CO mixing ratio is greater at higher altitudes, indicating vertical transport of biomass burning emissions to the upper troposphere.
C02 01  2    @0 220
C02 02  3    @0 001E
C02 03  2    @0 001E01
C03 01  X  FRE  @0 Satellite Terra @5 01
C03 01  X  ENG  @0 Terra satellite @5 01
C03 01  X  SPA  @0 Satélite Terra @5 01
C03 02  2  FRE  @0 Pollution @5 02
C03 02  2  ENG  @0 pollution @5 02
C03 02  2  SPA  @0 Polución @5 02
C03 03  2  FRE  @0 Hémisphère Sud @5 03
C03 03  2  ENG  @0 Southern Hemisphere @5 03
C03 03  2  SPA  @0 Hemisferio sur @5 03
C03 04  X  FRE  @0 Feu végétation @5 04
C03 04  X  ENG  @0 Vegetation fire @5 04
C03 04  X  SPA  @0 Fuego vegetación @5 04
C03 05  2  FRE  @0 Fraction fine @5 05
C03 05  2  ENG  @0 fine-grained materials @5 05
C03 05  2  SPA  @0 Fracción fina @5 05
C03 06  2  FRE  @0 Particule @5 06
C03 06  2  ENG  @0 particles @5 06
C03 07  2  FRE  @0 Combustion @5 07
C03 07  2  ENG  @0 combustion @5 07
C03 07  2  SPA  @0 Combustión @5 07
C03 08  2  FRE  @0 Monoxyde carbone @5 08
C03 08  2  ENG  @0 carbon monoxide @5 08
C03 09  X  FRE  @0 Carbone monoxyde @2 NK @2 FX @5 09
C03 09  X  ENG  @0 Carbon monoxide @2 NK @2 FX @5 09
C03 09  X  SPA  @0 Carbono monóxido @2 NK @2 FX @5 09
C03 10  2  FRE  @0 Troposphère @5 10
C03 10  2  ENG  @0 troposphere @5 10
C03 11  2  FRE  @0 Instrumentation @5 11
C03 11  2  ENG  @0 instruments @5 11
C03 11  2  SPA  @0 Instrumentación @5 11
C03 12  2  FRE  @0 Aérosol @5 12
C03 12  2  ENG  @0 aerosols @5 12
C03 12  2  SPA  @0 Aerosol @5 12
C03 13  X  FRE  @0 Epaisseur optique @5 13
C03 13  X  ENG  @0 Optical thickness @5 13
C03 13  X  SPA  @0 Espesor óptico @5 13
C03 14  2  FRE  @0 Mesure satellite @5 14
C03 14  2  ENG  @0 satellite measurements @5 14
C03 15  X  FRE  @0 Observation par satellite @5 15
C03 15  X  ENG  @0 Satellite observation @5 15
C03 15  X  SPA  @0 Observación por satélite @5 15
C03 16  2  FRE  @0 Transport @5 16
C03 16  2  ENG  @0 transport @5 16
C03 16  2  SPA  @0 Transporte @5 16
C03 17  2  FRE  @0 Modèle @5 17
C03 17  2  ENG  @0 models @5 17
C03 17  2  SPA  @0 Modelo @5 17
C03 18  2  FRE  @0 Incendie @5 18
C03 18  2  ENG  @0 fires @5 18
C03 19  X  FRE  @0 Emission polluant @5 19
C03 19  X  ENG  @0 Pollutant emission @5 19
C03 19  X  SPA  @0 Emisión contaminante @5 19
C03 20  X  FRE  @0 Saison sèche @5 20
C03 20  X  ENG  @0 Dry season @5 20
C03 20  X  SPA  @0 Estación seca @5 20
C03 21  2  FRE  @0 Variation temporelle @5 21
C03 21  2  ENG  @0 time variations @5 21
C03 21  2  SPA  @0 Variación temporal @5 21
C03 22  2  FRE  @0 Distribution spatiale @5 22
C03 22  2  ENG  @0 spatial distribution @5 22
C03 22  2  SPA  @0 Distribución espacial @5 22
C03 23  X  FRE  @0 Répartition spatiale @5 23
C03 23  X  ENG  @0 Spatial distribution @5 23
C03 23  X  SPA  @0 Distribución espacial @5 23
C03 24  2  FRE  @0 Afrique @5 24
C03 24  2  ENG  @0 Africa @5 24
C03 24  2  SPA  @0 Africa @5 24
C03 25  2  FRE  @0 Amérique du Sud @5 25
C03 25  2  ENG  @0 South America @5 25
C03 25  2  SPA  @0 America del sur @5 25
C03 26  2  FRE  @0 Nouvelle Zélande @2 NG @5 61
C03 26  2  ENG  @0 New Zealand @2 NG @5 61
C03 26  2  SPA  @0 Nueva Zelandia @2 NG @5 61
C07 01  2  FRE  @0 Australasie
C07 01  2  ENG  @0 Australasia
C07 01  2  SPA  @0 Australasia
N21       @1 268
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 06-0408047 INIST
ET : Satellite-observed pollution from Southern Hemisphere biomass burning
AU : EDWARDS (D. P.); EMMONS (L. K.); GILLE (J. C.); CHU (A.); ATTIE (J.-L.); GIGLIO (L.); WOOD (S. W.); HAYWOOD (J.); DEETER (M. N.); MASSIE (S. T.); ZISKIN (D. C.); DRUMMOND (J. R.)
AF : National Center for Atmospheric Research/Boulder, Colorado/Etats-Unis (1 aut., 2 aut., 3 aut., 9 aut., 10 aut., 11 aut.); Joint Center for Earth Systems Technology, University of Maryland, Baltimore County/Baltimore, Maryland/Etats-Unis (4 aut.); Observatoire Midi-Pyrénées/Toulouse/France (5 aut.); NASA Goddard Space Flight Center/Greenbelt, Maryland/Etats-Unis (6 aut.); National Institute of Water and Atmospheric Research Ltd, Central Otago/Lauder/Nouvelle-Zélande (7 aut.); Met Office/Exeter/Royaume-Uni (8 aut.); Department of Physics, University of Toronto/Toronto, Ontario/Canada (12 aut.)
DT : Publication en série; Niveau analytique
SO : Journal of geophysical research; ISSN 0148-0227; Etats-Unis; Da. 2006; Vol. 111; No. D14; D14312.1-D14312.17; Bibl. 2 p.1/4
LA : Anglais
EA : Biomass burning is a major source of pollution in the tropical Southern Hemisphere, and fine mode carbonaceous particles are produced by the same combustion processes that emit carbon monoxide (CO). In this paper we examine these emissions with data from the Terra satellite, CO profiles from the Measurement of Pollution in the Troposphere (MOPITT) instrument, and fine-mode aerosol optical depth (AOD) from the Moderate-Resolution Imaging Spectroradiometer (MODIS). The satellite measurements are used in conjunction with calculations from the MOZART chemical transport model to examine the 2003 Southern Hemisphere burning season with particular emphasis on the months of peak fire activity in September and October. Pollutant emissions follow the occurrence of dry season fires, and the temporal variation and spatial distributions of MOPITT CO and MODIS AOD are similar. We examine the outflow from Africa and South America with emphasis on the impact of these emissions on clean remote regions. We present comparisons of MOPITT observations and ground-based interferometer data from Lauder, New Zealand, which indicate that intercontinental transport of biomass burning pollution from Africa often determines the local air quality. The correlation between enhancements of AOD and CO column for distinct biomass burning plumes is very good with correlation coefficients greater than 0.8. We present a method using MOPITT and MODIS data for estimating the emission ratio of aerosol number density to CO concentration which could prove useful as input to modeling studies. We also investigate decay of plumes from African fires following export into the Indian Ocean and compare the MOPITT and MODIS measurements as a way of estimating the regional aerosol lifetime. Vertical transport of biomass burning emissions is also examined using CO profile information. Low-altitude concentrations are very high close to source regions, but further downwind of the continents, vertical mixing takes place and results in more even CO vertical distributions. In regions of significant convection, particularly in the equatorial Indian Ocean, the CO mixing ratio is greater at higher altitudes, indicating vertical transport of biomass burning emissions to the upper troposphere.
CC : 220; 001E; 001E01
FD : Satellite Terra; Pollution; Hémisphère Sud; Feu végétation; Fraction fine; Particule; Combustion; Monoxyde carbone; Carbone monoxyde; Troposphère; Instrumentation; Aérosol; Epaisseur optique; Mesure satellite; Observation par satellite; Transport; Modèle; Incendie; Emission polluant; Saison sèche; Variation temporelle; Distribution spatiale; Répartition spatiale; Afrique; Amérique du Sud; Nouvelle Zélande
FG : Australasie
ED : Terra satellite; pollution; Southern Hemisphere; Vegetation fire; fine-grained materials; particles; combustion; carbon monoxide; Carbon monoxide; troposphere; instruments; aerosols; Optical thickness; satellite measurements; Satellite observation; transport; models; fires; Pollutant emission; Dry season; time variations; spatial distribution; Spatial distribution; Africa; South America; New Zealand
EG : Australasia
SD : Satélite Terra; Polución; Hemisferio sur; Fuego vegetación; Fracción fina; Combustión; Carbono monóxido; Instrumentación; Aerosol; Espesor óptico; Observación por satélite; Transporte; Modelo; Emisión contaminante; Estación seca; Variación temporal; Distribución espacial; Distribución espacial; Africa; America del sur; Nueva Zelandia
LO : INIST-3144.354000133564730350
ID : 06-0408047

Links to Exploration step

Pascal:06-0408047

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Satellite-observed pollution from Southern Hemisphere biomass burning</title>
<author>
<name sortKey="Edwards, D P" sort="Edwards, D P" uniqKey="Edwards D" first="D. P." last="Edwards">D. P. Edwards</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Emmons, L K" sort="Emmons, L K" uniqKey="Emmons L" first="L. K." last="Emmons">L. K. Emmons</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Gille, J C" sort="Gille, J C" uniqKey="Gille J" first="J. C." last="Gille">J. C. Gille</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Chu, A" sort="Chu, A" uniqKey="Chu A" first="A." last="Chu">A. Chu</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Joint Center for Earth Systems Technology, University of Maryland, Baltimore County</s1>
<s2>Baltimore, Maryland</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Attie, J L" sort="Attie, J L" uniqKey="Attie J" first="J.-L." last="Attie">J.-L. Attie</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Observatoire Midi-Pyrénées</s1>
<s2>Toulouse</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Giglio, L" sort="Giglio, L" uniqKey="Giglio L" first="L." last="Giglio">L. Giglio</name>
<affiliation>
<inist:fA14 i1="04">
<s1>NASA Goddard Space Flight Center</s1>
<s2>Greenbelt, Maryland</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Wood, S W" sort="Wood, S W" uniqKey="Wood S" first="S. W." last="Wood">S. W. Wood</name>
<affiliation>
<inist:fA14 i1="05">
<s1>National Institute of Water and Atmospheric Research Ltd, Central Otago</s1>
<s2>Lauder</s2>
<s3>NZL</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Haywood, J" sort="Haywood, J" uniqKey="Haywood J" first="J." last="Haywood">J. Haywood</name>
<affiliation>
<inist:fA14 i1="06">
<s1>Met Office</s1>
<s2>Exeter</s2>
<s3>GBR</s3>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Deeter, M N" sort="Deeter, M N" uniqKey="Deeter M" first="M. N." last="Deeter">M. N. Deeter</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Massie, S T" sort="Massie, S T" uniqKey="Massie S" first="S. T." last="Massie">S. T. Massie</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ziskin, D C" sort="Ziskin, D C" uniqKey="Ziskin D" first="D. C." last="Ziskin">D. C. Ziskin</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Drummond, J R" sort="Drummond, J R" uniqKey="Drummond J" first="J. R." last="Drummond">J. R. Drummond</name>
<affiliation>
<inist:fA14 i1="07">
<s1>Department of Physics, University of Toronto</s1>
<s2>Toronto, Ontario</s2>
<s3>CAN</s3>
<sZ>12 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">06-0408047</idno>
<date when="2006">2006</date>
<idno type="stanalyst">PASCAL 06-0408047 INIST</idno>
<idno type="RBID">Pascal:06-0408047</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000152</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Satellite-observed pollution from Southern Hemisphere biomass burning</title>
<author>
<name sortKey="Edwards, D P" sort="Edwards, D P" uniqKey="Edwards D" first="D. P." last="Edwards">D. P. Edwards</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Emmons, L K" sort="Emmons, L K" uniqKey="Emmons L" first="L. K." last="Emmons">L. K. Emmons</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Gille, J C" sort="Gille, J C" uniqKey="Gille J" first="J. C." last="Gille">J. C. Gille</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Chu, A" sort="Chu, A" uniqKey="Chu A" first="A." last="Chu">A. Chu</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Joint Center for Earth Systems Technology, University of Maryland, Baltimore County</s1>
<s2>Baltimore, Maryland</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Attie, J L" sort="Attie, J L" uniqKey="Attie J" first="J.-L." last="Attie">J.-L. Attie</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Observatoire Midi-Pyrénées</s1>
<s2>Toulouse</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Giglio, L" sort="Giglio, L" uniqKey="Giglio L" first="L." last="Giglio">L. Giglio</name>
<affiliation>
<inist:fA14 i1="04">
<s1>NASA Goddard Space Flight Center</s1>
<s2>Greenbelt, Maryland</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Wood, S W" sort="Wood, S W" uniqKey="Wood S" first="S. W." last="Wood">S. W. Wood</name>
<affiliation>
<inist:fA14 i1="05">
<s1>National Institute of Water and Atmospheric Research Ltd, Central Otago</s1>
<s2>Lauder</s2>
<s3>NZL</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Haywood, J" sort="Haywood, J" uniqKey="Haywood J" first="J." last="Haywood">J. Haywood</name>
<affiliation>
<inist:fA14 i1="06">
<s1>Met Office</s1>
<s2>Exeter</s2>
<s3>GBR</s3>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Deeter, M N" sort="Deeter, M N" uniqKey="Deeter M" first="M. N." last="Deeter">M. N. Deeter</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Massie, S T" sort="Massie, S T" uniqKey="Massie S" first="S. T." last="Massie">S. T. Massie</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ziskin, D C" sort="Ziskin, D C" uniqKey="Ziskin D" first="D. C." last="Ziskin">D. C. Ziskin</name>
<affiliation>
<inist:fA14 i1="01">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Drummond, J R" sort="Drummond, J R" uniqKey="Drummond J" first="J. R." last="Drummond">J. R. Drummond</name>
<affiliation>
<inist:fA14 i1="07">
<s1>Department of Physics, University of Toronto</s1>
<s2>Toronto, Ontario</s2>
<s3>CAN</s3>
<sZ>12 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of geophysical research</title>
<title level="j" type="abbreviated">J. geophys. res.</title>
<idno type="ISSN">0148-0227</idno>
<imprint>
<date when="2006">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of geophysical research</title>
<title level="j" type="abbreviated">J. geophys. res.</title>
<idno type="ISSN">0148-0227</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Africa</term>
<term>Carbon monoxide</term>
<term>Dry season</term>
<term>New Zealand</term>
<term>Optical thickness</term>
<term>Pollutant emission</term>
<term>Satellite observation</term>
<term>South America</term>
<term>Southern Hemisphere</term>
<term>Spatial distribution</term>
<term>Terra satellite</term>
<term>Vegetation fire</term>
<term>aerosols</term>
<term>carbon monoxide</term>
<term>combustion</term>
<term>fine-grained materials</term>
<term>fires</term>
<term>instruments</term>
<term>models</term>
<term>particles</term>
<term>pollution</term>
<term>satellite measurements</term>
<term>spatial distribution</term>
<term>time variations</term>
<term>transport</term>
<term>troposphere</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Satellite Terra</term>
<term>Pollution</term>
<term>Hémisphère Sud</term>
<term>Feu végétation</term>
<term>Fraction fine</term>
<term>Particule</term>
<term>Combustion</term>
<term>Monoxyde carbone</term>
<term>Carbone monoxyde</term>
<term>Troposphère</term>
<term>Instrumentation</term>
<term>Aérosol</term>
<term>Epaisseur optique</term>
<term>Mesure satellite</term>
<term>Observation par satellite</term>
<term>Transport</term>
<term>Modèle</term>
<term>Incendie</term>
<term>Emission polluant</term>
<term>Saison sèche</term>
<term>Variation temporelle</term>
<term>Distribution spatiale</term>
<term>Répartition spatiale</term>
<term>Afrique</term>
<term>Amérique du Sud</term>
<term>Nouvelle Zélande</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Biomass burning is a major source of pollution in the tropical Southern Hemisphere, and fine mode carbonaceous particles are produced by the same combustion processes that emit carbon monoxide (CO). In this paper we examine these emissions with data from the Terra satellite, CO profiles from the Measurement of Pollution in the Troposphere (MOPITT) instrument, and fine-mode aerosol optical depth (AOD) from the Moderate-Resolution Imaging Spectroradiometer (MODIS). The satellite measurements are used in conjunction with calculations from the MOZART chemical transport model to examine the 2003 Southern Hemisphere burning season with particular emphasis on the months of peak fire activity in September and October. Pollutant emissions follow the occurrence of dry season fires, and the temporal variation and spatial distributions of MOPITT CO and MODIS AOD are similar. We examine the outflow from Africa and South America with emphasis on the impact of these emissions on clean remote regions. We present comparisons of MOPITT observations and ground-based interferometer data from Lauder, New Zealand, which indicate that intercontinental transport of biomass burning pollution from Africa often determines the local air quality. The correlation between enhancements of AOD and CO column for distinct biomass burning plumes is very good with correlation coefficients greater than 0.8. We present a method using MOPITT and MODIS data for estimating the emission ratio of aerosol number density to CO concentration which could prove useful as input to modeling studies. We also investigate decay of plumes from African fires following export into the Indian Ocean and compare the MOPITT and MODIS measurements as a way of estimating the regional aerosol lifetime. Vertical transport of biomass burning emissions is also examined using CO profile information. Low-altitude concentrations are very high close to source regions, but further downwind of the continents, vertical mixing takes place and results in more even CO vertical distributions. In regions of significant convection, particularly in the equatorial Indian Ocean, the CO mixing ratio is greater at higher altitudes, indicating vertical transport of biomass burning emissions to the upper troposphere.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0148-0227</s0>
</fA01>
<fA03 i2="1">
<s0>J. geophys. res.</s0>
</fA03>
<fA05>
<s2>111</s2>
</fA05>
<fA06>
<s2>D14</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Satellite-observed pollution from Southern Hemisphere biomass burning</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>EDWARDS (D. P.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>EMMONS (L. K.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>GILLE (J. C.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>CHU (A.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>ATTIE (J.-L.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>GIGLIO (L.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>WOOD (S. W.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>HAYWOOD (J.)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>DEETER (M. N.)</s1>
</fA11>
<fA11 i1="10" i2="1">
<s1>MASSIE (S. T.)</s1>
</fA11>
<fA11 i1="11" i2="1">
<s1>ZISKIN (D. C.)</s1>
</fA11>
<fA11 i1="12" i2="1">
<s1>DRUMMOND (J. R.)</s1>
</fA11>
<fA14 i1="01">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Joint Center for Earth Systems Technology, University of Maryland, Baltimore County</s1>
<s2>Baltimore, Maryland</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Observatoire Midi-Pyrénées</s1>
<s2>Toulouse</s2>
<s3>FRA</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>NASA Goddard Space Flight Center</s1>
<s2>Greenbelt, Maryland</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>National Institute of Water and Atmospheric Research Ltd, Central Otago</s1>
<s2>Lauder</s2>
<s3>NZL</s3>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="06">
<s1>Met Office</s1>
<s2>Exeter</s2>
<s3>GBR</s3>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="07">
<s1>Department of Physics, University of Toronto</s1>
<s2>Toronto, Ontario</s2>
<s3>CAN</s3>
<sZ>12 aut.</sZ>
</fA14>
<fA20>
<s2>D14312.1-D14312.17</s2>
</fA20>
<fA21>
<s1>2006</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>3144</s2>
<s5>354000133564730350</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2006 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>2 p.1/4</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>06-0408047</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of geophysical research</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Biomass burning is a major source of pollution in the tropical Southern Hemisphere, and fine mode carbonaceous particles are produced by the same combustion processes that emit carbon monoxide (CO). In this paper we examine these emissions with data from the Terra satellite, CO profiles from the Measurement of Pollution in the Troposphere (MOPITT) instrument, and fine-mode aerosol optical depth (AOD) from the Moderate-Resolution Imaging Spectroradiometer (MODIS). The satellite measurements are used in conjunction with calculations from the MOZART chemical transport model to examine the 2003 Southern Hemisphere burning season with particular emphasis on the months of peak fire activity in September and October. Pollutant emissions follow the occurrence of dry season fires, and the temporal variation and spatial distributions of MOPITT CO and MODIS AOD are similar. We examine the outflow from Africa and South America with emphasis on the impact of these emissions on clean remote regions. We present comparisons of MOPITT observations and ground-based interferometer data from Lauder, New Zealand, which indicate that intercontinental transport of biomass burning pollution from Africa often determines the local air quality. The correlation between enhancements of AOD and CO column for distinct biomass burning plumes is very good with correlation coefficients greater than 0.8. We present a method using MOPITT and MODIS data for estimating the emission ratio of aerosol number density to CO concentration which could prove useful as input to modeling studies. We also investigate decay of plumes from African fires following export into the Indian Ocean and compare the MOPITT and MODIS measurements as a way of estimating the regional aerosol lifetime. Vertical transport of biomass burning emissions is also examined using CO profile information. Low-altitude concentrations are very high close to source regions, but further downwind of the continents, vertical mixing takes place and results in more even CO vertical distributions. In regions of significant convection, particularly in the equatorial Indian Ocean, the CO mixing ratio is greater at higher altitudes, indicating vertical transport of biomass burning emissions to the upper troposphere.</s0>
</fC01>
<fC02 i1="01" i2="2">
<s0>220</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001E</s0>
</fC02>
<fC02 i1="03" i2="2">
<s0>001E01</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Satellite Terra</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Terra satellite</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Satélite Terra</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="2" l="FRE">
<s0>Pollution</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="2" l="ENG">
<s0>pollution</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="2" l="SPA">
<s0>Polución</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="2" l="FRE">
<s0>Hémisphère Sud</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="2" l="ENG">
<s0>Southern Hemisphere</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="2" l="SPA">
<s0>Hemisferio sur</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Feu végétation</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Vegetation fire</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Fuego vegetación</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="2" l="FRE">
<s0>Fraction fine</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="2" l="ENG">
<s0>fine-grained materials</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="2" l="SPA">
<s0>Fracción fina</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="2" l="FRE">
<s0>Particule</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="2" l="ENG">
<s0>particles</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="2" l="FRE">
<s0>Combustion</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="2" l="ENG">
<s0>combustion</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="2" l="SPA">
<s0>Combustión</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="2" l="FRE">
<s0>Monoxyde carbone</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="2" l="ENG">
<s0>carbon monoxide</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Carbone monoxyde</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Carbon monoxide</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Carbono monóxido</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="2" l="FRE">
<s0>Troposphère</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="2" l="ENG">
<s0>troposphere</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="2" l="FRE">
<s0>Instrumentation</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="2" l="ENG">
<s0>instruments</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="2" l="SPA">
<s0>Instrumentación</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="2" l="FRE">
<s0>Aérosol</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="2" l="ENG">
<s0>aerosols</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="2" l="SPA">
<s0>Aerosol</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Epaisseur optique</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Optical thickness</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Espesor óptico</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="2" l="FRE">
<s0>Mesure satellite</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="2" l="ENG">
<s0>satellite measurements</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Observation par satellite</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Satellite observation</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Observación por satélite</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="2" l="FRE">
<s0>Transport</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="2" l="ENG">
<s0>transport</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="2" l="SPA">
<s0>Transporte</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="2" l="FRE">
<s0>Modèle</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="2" l="ENG">
<s0>models</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="2" l="SPA">
<s0>Modelo</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="2" l="FRE">
<s0>Incendie</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="2" l="ENG">
<s0>fires</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Emission polluant</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Pollutant emission</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Emisión contaminante</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Saison sèche</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Dry season</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Estación seca</s0>
<s5>20</s5>
</fC03>
<fC03 i1="21" i2="2" l="FRE">
<s0>Variation temporelle</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="2" l="ENG">
<s0>time variations</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="2" l="SPA">
<s0>Variación temporal</s0>
<s5>21</s5>
</fC03>
<fC03 i1="22" i2="2" l="FRE">
<s0>Distribution spatiale</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="2" l="ENG">
<s0>spatial distribution</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="2" l="SPA">
<s0>Distribución espacial</s0>
<s5>22</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Répartition spatiale</s0>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Spatial distribution</s0>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Distribución espacial</s0>
<s5>23</s5>
</fC03>
<fC03 i1="24" i2="2" l="FRE">
<s0>Afrique</s0>
<s5>24</s5>
</fC03>
<fC03 i1="24" i2="2" l="ENG">
<s0>Africa</s0>
<s5>24</s5>
</fC03>
<fC03 i1="24" i2="2" l="SPA">
<s0>Africa</s0>
<s5>24</s5>
</fC03>
<fC03 i1="25" i2="2" l="FRE">
<s0>Amérique du Sud</s0>
<s5>25</s5>
</fC03>
<fC03 i1="25" i2="2" l="ENG">
<s0>South America</s0>
<s5>25</s5>
</fC03>
<fC03 i1="25" i2="2" l="SPA">
<s0>America del sur</s0>
<s5>25</s5>
</fC03>
<fC03 i1="26" i2="2" l="FRE">
<s0>Nouvelle Zélande</s0>
<s2>NG</s2>
<s5>61</s5>
</fC03>
<fC03 i1="26" i2="2" l="ENG">
<s0>New Zealand</s0>
<s2>NG</s2>
<s5>61</s5>
</fC03>
<fC03 i1="26" i2="2" l="SPA">
<s0>Nueva Zelandia</s0>
<s2>NG</s2>
<s5>61</s5>
</fC03>
<fC07 i1="01" i2="2" l="FRE">
<s0>Australasie</s0>
</fC07>
<fC07 i1="01" i2="2" l="ENG">
<s0>Australasia</s0>
</fC07>
<fC07 i1="01" i2="2" l="SPA">
<s0>Australasia</s0>
</fC07>
<fN21>
<s1>268</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 06-0408047 INIST</NO>
<ET>Satellite-observed pollution from Southern Hemisphere biomass burning</ET>
<AU>EDWARDS (D. P.); EMMONS (L. K.); GILLE (J. C.); CHU (A.); ATTIE (J.-L.); GIGLIO (L.); WOOD (S. W.); HAYWOOD (J.); DEETER (M. N.); MASSIE (S. T.); ZISKIN (D. C.); DRUMMOND (J. R.)</AU>
<AF>National Center for Atmospheric Research/Boulder, Colorado/Etats-Unis (1 aut., 2 aut., 3 aut., 9 aut., 10 aut., 11 aut.); Joint Center for Earth Systems Technology, University of Maryland, Baltimore County/Baltimore, Maryland/Etats-Unis (4 aut.); Observatoire Midi-Pyrénées/Toulouse/France (5 aut.); NASA Goddard Space Flight Center/Greenbelt, Maryland/Etats-Unis (6 aut.); National Institute of Water and Atmospheric Research Ltd, Central Otago/Lauder/Nouvelle-Zélande (7 aut.); Met Office/Exeter/Royaume-Uni (8 aut.); Department of Physics, University of Toronto/Toronto, Ontario/Canada (12 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Journal of geophysical research; ISSN 0148-0227; Etats-Unis; Da. 2006; Vol. 111; No. D14; D14312.1-D14312.17; Bibl. 2 p.1/4</SO>
<LA>Anglais</LA>
<EA>Biomass burning is a major source of pollution in the tropical Southern Hemisphere, and fine mode carbonaceous particles are produced by the same combustion processes that emit carbon monoxide (CO). In this paper we examine these emissions with data from the Terra satellite, CO profiles from the Measurement of Pollution in the Troposphere (MOPITT) instrument, and fine-mode aerosol optical depth (AOD) from the Moderate-Resolution Imaging Spectroradiometer (MODIS). The satellite measurements are used in conjunction with calculations from the MOZART chemical transport model to examine the 2003 Southern Hemisphere burning season with particular emphasis on the months of peak fire activity in September and October. Pollutant emissions follow the occurrence of dry season fires, and the temporal variation and spatial distributions of MOPITT CO and MODIS AOD are similar. We examine the outflow from Africa and South America with emphasis on the impact of these emissions on clean remote regions. We present comparisons of MOPITT observations and ground-based interferometer data from Lauder, New Zealand, which indicate that intercontinental transport of biomass burning pollution from Africa often determines the local air quality. The correlation between enhancements of AOD and CO column for distinct biomass burning plumes is very good with correlation coefficients greater than 0.8. We present a method using MOPITT and MODIS data for estimating the emission ratio of aerosol number density to CO concentration which could prove useful as input to modeling studies. We also investigate decay of plumes from African fires following export into the Indian Ocean and compare the MOPITT and MODIS measurements as a way of estimating the regional aerosol lifetime. Vertical transport of biomass burning emissions is also examined using CO profile information. Low-altitude concentrations are very high close to source regions, but further downwind of the continents, vertical mixing takes place and results in more even CO vertical distributions. In regions of significant convection, particularly in the equatorial Indian Ocean, the CO mixing ratio is greater at higher altitudes, indicating vertical transport of biomass burning emissions to the upper troposphere.</EA>
<CC>220; 001E; 001E01</CC>
<FD>Satellite Terra; Pollution; Hémisphère Sud; Feu végétation; Fraction fine; Particule; Combustion; Monoxyde carbone; Carbone monoxyde; Troposphère; Instrumentation; Aérosol; Epaisseur optique; Mesure satellite; Observation par satellite; Transport; Modèle; Incendie; Emission polluant; Saison sèche; Variation temporelle; Distribution spatiale; Répartition spatiale; Afrique; Amérique du Sud; Nouvelle Zélande</FD>
<FG>Australasie</FG>
<ED>Terra satellite; pollution; Southern Hemisphere; Vegetation fire; fine-grained materials; particles; combustion; carbon monoxide; Carbon monoxide; troposphere; instruments; aerosols; Optical thickness; satellite measurements; Satellite observation; transport; models; fires; Pollutant emission; Dry season; time variations; spatial distribution; Spatial distribution; Africa; South America; New Zealand</ED>
<EG>Australasia</EG>
<SD>Satélite Terra; Polución; Hemisferio sur; Fuego vegetación; Fracción fina; Combustión; Carbono monóxido; Instrumentación; Aerosol; Espesor óptico; Observación por satélite; Transporte; Modelo; Emisión contaminante; Estación seca; Variación temporal; Distribución espacial; Distribución espacial; Africa; America del sur; Nueva Zelandia</SD>
<LO>INIST-3144.354000133564730350</LO>
<ID>06-0408047</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/MozartV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000152 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000152 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    MozartV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:06-0408047
   |texte=   Satellite-observed pollution from Southern Hemisphere biomass burning
}}

Wicri

This area was generated with Dilib version V0.6.20.
Data generation: Sun Apr 10 15:06:14 2016. Site generation: Tue Feb 7 15:40:35 2023